
Lecture 32: Convolution
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Warm-up Exercise

Before we begin, let us start with some warm-up exercises
Suppose f : {0, 1}n → R is a real-valued function
Think: f̂ (0) represents the mean of f , when the input of f (·)
is chosen uniformly at random, i.e., f̂ (0) = E

[
f (U)

]
Think:

∑
S 6=0 f̂ (S)

2 represents the variance of the random
variable f (U)

For two functions f , g : {0, 1}n → {+1,−1} the inner-product
〈f , g〉 measures the “similarity” of the two functions
Think: If f , g agree at (1− ε) fraction of inputs and they differ
in the remaining ε fraction of the inputs then 〈f , g〉 = (1− 2ε)
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Outline of today’s lecture

In today’s lecture we shall study about an important property
of the Fourier basis functions that makes them special, namely,
additive homomorphism
This additive homomorphism property shall help us prove
interesting properties of an important technical tools in Fourier
analysis called Convolution
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Additive Homomorphism

Let f : {0, 1}n → R be an arbitrary function
We say that f exhibits “additive homomorphism” if, for all
x , y ∈ {0, 1}n, we have

f (x + y) = f (x) · f (y)

Observe that all the Fourier basis functions χS satisfy this
additive homomorphism property
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Discussion of “What is a Fourier Basis”

Let F = {f0, f1, . . . , fN−1} be a set of functions {0, 1}n → R
such that

1 Orthonormality. The functions in F are orthonormal with
respect to an “inner-product”

2 Symmetry. For all i ∈ {0, . . . ,N} and x ∈ {0, 1}n, we have
fi (x) = fx(i)

3 Additive Homomorphism. For all x , y ∈ {0, 1}n, and
i ∈ {0, . . . ,N − 1}, we have fi (x + y) = fi (x) · fi (y)

Any analysis that we perform in this course extends to any
basis F with the properties mentioned above
Think: These properties imply that f0(x) = 1, for all
x ∈ {0, 1}n!
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Intuition of the Convolution Operator

Let X ,Y be probability distributions over {0, 1}n

Consider the following algorithm
1 Sample x ∼ X and sample y ∼ Y

2 Output z = x ⊕ y

Note that the output of this algorithm is a distribution over
the sample space {0, 1}n. Let us represent the output
distribution of this algorithm by Z (also referred to as the
distribution X ⊕ Y )
Question: What is the P [Z = z ]?

Note that x can be anything in {0, 1}n. However, given x and
z , there is a unique y = x ⊕ z such that x ⊕ y = z
So, we have

P [Z = z ] =
∑

x∈{0,1}n

P [X = x ]P [Y = x ⊕ z ]

The distribution Z is (a scaling) of the convolution of the
distributions X and Y .
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Convolution

1 Let f , g : {0, 1}n → R be two functions
2 The convolution of f and g is the function

(f ∗ g) : {0, 1}n → R defined as follows

(f ∗ g)(x) = 1
N

∑
y∈{0,1}n

f (y) · g(x − y)

3 Note that if X and Y are two function representing probability
distributions over {0, 1}n, then N(X ∗ Y ) is the function
corresponding to the probability distribution X ⊕ Y

4 Note that the Convolution is a bilinear operator!
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Fourier Transform of Convolution I

Given two function f and g , we are interested in expressing the
function (̂f ∗ g) using the functions f̂ and ĝ

We shall prove the following result

Lemma
For all functions f , g : {0, 1}n → R and S ∈ {0, 1}n, we have

(̂f ∗ g)(S) = f̂ (S) · ĝ(S)

We shall provide a direct proof for this result

(̂f ∗ g)(S) = 1
N

∑
x∈{0,1}n

(f ∗ g)(x)χS(x)

=
1
N

∑
x∈{0,1}n

1
N

∑
y∈{0,1}n

f (y)g(x − y)χS(x)
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Fourier Transform of Convolution II

=
1
N2

∑
x∈{0,1}n

∑
y∈{0,1}n

f (y)g(x − y)χS(y)χS(x − y)

The final step above is a consequence of the additive
homomorphism of the function χS . Let us continue with the
simplification.

(̂f ∗ g)(S) = 1
N2

∑
x∈{0,1}n

∑
y∈{0,1}n

f (y)g(x − y)χS(y)χS(x − y)

=
1
N2

∑
y∈{0,1}n

f (y)χS(y)
∑

r∈{0,1}n
g(r)χS(r)

=

 1
N

∑
y∈{0,1}n

f (y)χS(y)


 1
N

∑
r∈{0,1}n

g(r)χS(r)


= f̂ (S) · ĝ(S)
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Fourier Transform of Convolution III

We can succinctly summarize this result as follows:
(̂f ∗ g) = f̂ · ĝ

Exercise: Express f̂ · g using f̂ and ĝ
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Offset of a Function I

Let f : {0, 1}n → R
Define g : {0, 1}n → R as g(x) = f (x − c), for some
c ∈ {0, 1}n

We are interested in expressing ĝ(S) using f̂ (S) and c

ĝ(S) =
1
N

∑
x∈{0,1}n

g(x)χS(x)

=
1
N

∑
x∈{0,1}n

f (x − c)χS(x − c)χS(c)

= χS(c)
1
N

∑
x∈{0,1}n

f (x − c)χS(x − c)

= χc(S) · f̂ (S)
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Offset of a Function II

That is, we conclude that ĝ = χc · f̂ . Recall that
χc(S) ∈ {+1,−1}. So, χc(S) · f̂ (S) is either f̂ (S) or −f̂ (S).
Intuition: If g is an offset of the function f , then ĝ is a
“twisting/rotation” of the function f̂ . So, by studying the
magnitudes of the Fourier transform, we can study the
function “independent of their offsets”

Additional Perspective: In fact, this result also implies that g
can be rewritten as N(χ̂c ∗ f )
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